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Spatiotemporal periodic and chaotic patterns in a two-dimensional coupled map lattice system
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The pattern dynamics of a two-dimensional coupled map lattice system is studied using both analytical and
numerical calculations. Two interesting spatiotemporal periodic patterns are solved analytically. Their stability
boundaries for small system size are obtained by linear stability analysis. As the system sizes mismatch the
spatial periodicity of the patterns, a frozen random chaotic defect cluster and a slow random propagated chaotic
defect string appeafS1063-651X96)09712-7

PACS numbdss): 05.45+b

[. INTRODUCTION f(x)=ax(1—x), with a the nonlinear parameter. In R6],
Kaneko numerically discovered a few interesting phenomena
The dynamics of coupled nonlinear systems has attracteslich as pattern selection and chaotic string in the syétem
great interest in the past decgde-12]. One such system is However, more detailed analytical discussions have not been
the coupled map latticéCML), which has been demon- provided. In Sec. I, we derive some interesting periodic pat-
strated to be powerful for heuristically understanding theterns of the system. Their stability boundaries for small sys-
universal features in extended systems in optics, fluids, bioltem size in the parameter plane are also worked out analyti-
ogy, etc. Rich spatiotemporal complex behaviors, includingcally. In Sec. Ill, we investigate the dependence of the
patterns, domain walls, traveling waves, intermittency,spatiotemporal patterns on the system size. As the system
chaos, and developed turbulence, are revealed in the onsize mismatches the spatial periodicity of these patterns, two
dimensional CML[1-9]. An extension of the study of the surprising and interesting phenomena, such as a frozen ran-
CML to a two-dimensional lattice was briefly addressed indom chaotic defect cluster and a slow, randomly propagated
Ref. [6]. It has been known that the two-dimensional CML chaotic defect strindi.e., the chaotic defect string keeps
system possesses more interesting and complicated spaoving and wanders in the two-dimensional space like a
tiotemporal phenomena than the one-dimensional one. Brownian particlg, are found. Finally, we give some conclu-
deeper investigation of two-dimensional coupled map syssions in Sec. IV.
tems may be very useful for understanding even more com-
plicated and realistic features of higher-dimensional systems.
In this presentation, we focus our attention on the investiga- Il. SPATIOTEMPORAL PERIODIC PATTERNS
tion of the two-dimensional CML with a nearest-neighbor IN A TWO-DIMENSIONAL CML

coupled interaction in square lattices ) ) ) )
In a one-dimensional nearest-neighbor coupling CML,

many of spatiotemporal periodic patterns have been obtained

o o € o by analytical and numerical methods due to the high symme-
Xn+2(1,))= (1= e)fOxa(i, )+ Z[F(xa(i = 1)) try [8]. In this section we discuss some periodic patterns in

the two-dimensional CML. We will denote the temporal pe-

+F(Xp(i + 1))+ F(Xn(i,j — 1)) riod m asT,,, spatial periodn asS,. It is natural to first

study patterns with small-time and -space periods. The sim-

+f(x,(i,j+1))], (1)  plest one isT,S;,S;, state, which has period 2 for both time
and two spatial directions. The spatial structure of this state

with the periodic boundary conditiong(i +N;,j)=x(i,j), IS schematically shown in Fig.(d). Herex; andx, satisfy

and x(i,j +Ny)=x(i,j), whereN; and N, are the system

sizes in both spatial dimensions. Herds the discrete time

index,i(=0,1,2,...,N;,—1) andj(=0,1,2,. .. ,N,—1) are Xo=(1—€)f(xy) + €f(x2),

the spatial indices in the horizontal and vertical directions,

respectively, ance is the diffusive coupling strength. The

local mapping functiorf(x) is chosen to be the logistic map X1=(1—¢e)f(xy)+ ef(Xy), (2)

*Electronic address: xiefg@itp.ac.cn which can be solved as
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_1+a-2ae*(1+a—2ae)’~4(1-a)(1-€)—8a(l—¢)”
X127 2a(1-2e) ’ )

which is a period-2 wave pattern running in both spatial directions. Although the solutions have the same form as in the
one-dimensional CML(see Ref[8]), the eigenvalues are different. The stability condition for this statd.at2,N,=2 is
determined by the largest eigenvalue among all the eigenvalues obtHeliiear stability matrix

€ € €
(1-e)f, =f, f, 0 (1—-ef, Efl ffl 0

€ € € €

5t (1-9f 0 5f1 5fz (1-9f 0 AR
J= ,

€ € € €

Efl 0 (1-ef, §f1 Efg 0 (1-e)fy Efz

€ € € €
0 Efz Efz (1—6)f1 0 Efl Efl (1_6)1:2

wheref, ,=a(1—2x; ). The matrixJ can be put into a block-diagonal form by a unitary transformation as

(1—€)?f,f, 0 0 0

0 (1— €)%, f, 0 0
)= 0 0 (1— €)%+ €2 e(1—e)fq(f1+T,)
0 0 e(1—e)fy(f+fy) (1—e)?f f+ €2

Thus the corresponding eigenvalues are

Ny o=(1—€)?fyf;,

2(1— €)%f,f o+ 2(F2+3) = \[2(1— €)%f,f o+ €2(F1+ 1) ]P— 4(1—2¢)2F2f5
N3 4= > . (4)

The stability boundaries determined by these critical eigenand significant problem naturally arises whether these peri-
values are shown in Fig. 2 by the solid lines. odic states for the small system size still exist and are stable
Another interesting staf€,S;,S;, or T,S;,S;, can be eas- as the system size increases. As long as the system size
ily deduced from theT,S;,S;, state. The spatial structure of matches their spatial periodicity, these patterns always exist
the state is schematically shown in FigblLor 1(c). Here in the same parameter regigthat is obvious However,
X1 andx, are also given by Eq$2) and(3), excepte should  enlarging the phase space may result in some changes of
be replaced by €. Thus, if there exists d,S;,S;, state at their stability boundaries. Moreover, the transient process for
€o, then there must be &,S;,S;, or a T,S,S;, state at reaching these patterns may become very long. The stability
% €, and, of course, the system size must match the spati@nalysis of these patterns for large system size has been for-
periodicity of the pattern. With some simple algebra calcu-mally and briefly discussed in Ref8]. Here we simply in-
lations, the critical values of the stabl&,S,S;; or vestigate the problem by numerical computation. Figure 3
T,Si,S;4 state are jusf times that for ther »Si»S;; state. The  shows several snapshots of an evolution process of the sys-
stability boundaries of the state are shown in Fig. 2 bytem for N;=N,=50, a=4, and €=0.15, where the
dashed lines foN;=4,N,=2, orN;=2N,=4. T,S,S;, state is stable. We choose the random initial condi-
As the system size becomes large and the symmetry of th#ns in(0,1) throughout the paper. At the first time stage, the
system becomes very high, the number of attractors increas®ghavior of the system is random motion and few sites arrive
rapidly due to the high symmetry. Therefore, an interestingat the periodic state forming smdlS;,S;, clusterdsee Fig.
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FIG. 1. Schematic spatiotemporal periodic patter(s

ngzsjz, (b) T23‘4Sj2, and (C) Tzsizsj4.

3(a)]. After a transient procesB09 iterationy, half of the
remaining lattices arrive at this period-2 sthtee Fig. 8)].
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FIG. 2. Stability boundaries foll,S,S;, (N;=N,=2, solid
lines), T,S4S, (N1=4N,=2, dashed lings or T,S,S;,
(N1=2, N2=4)

Ill. FROZEN RANDOM CHAOTIC DEFECT CLUSTER
AND SLOW RANDOM PROPAGATED CHAOQOTIC
DEFECT STRING IN A TWO-DIMENSIONAL CML

In the preceding section, we discussed the pattern dynam-
ics for even system size, which matches the spatial periodic-
ity of the given states. What happens when the system size
mismatches their spatial periodicifiye., N; or N, (or both
is (arg taken as od{ In the following, we investigate the
interesting problem for th&,S;,S;, pattern only.

First, we let the size of one spatial direction take an odd
number and the other remains even. For instance, we take all
parameters to be the same as those in Fig. 3, except we
replaceN,=50 by 51. Now theT,S;,S;, pattern cannot be
stable due to the mismatch of the odd size number ofj the
direction. We show several snapshots of an evolution process
in Fig. 5. From the figure, a very interesting and surprising
phenomenon, a parallel chaotic defect clugtbe width is
near eight sites, the other sites stay at the period-2)state
appears after some transient iterations. As long as the chaotic
defect cluster is formed along thedirection, it is frozen
forever (forever in the sense that the time period for the
frozen pattern numerically tested is already incomparably
larger than the transient time

Comparing Fig. &) with Fig. 5b), the pattern is almost
the same, although the system evolves anotheitéfations.

Figure 3c) is the final spatiotemporal period-2 pattern after The frozen feature can be more clearly observed in Fig. 6.
12 498 iterationgit was reported as a checkerboard patternWe plot the timeT; ; againsti,j, whereT; ; is the first time
in Ref.[6]). Several snapshots for another interesting evolufor the (i,j)th site to be excited from the period-2 state,

tion process are shown in Fig. 4 fih=N,=52, a=4, and

starting from Fig. §¢). The times for these sites, which do

€=0.2. From Fig. 4, it is clear that the system finally settlesnot belong to the chaotic defect pattern, are almost infinity
down into theT,S;,S;, pattern after a very complicated and (the white region in Fig. 6 Therefore, the frozen character is
longer transient processafter 53 134 iterations

clear. Furthermore, the position of the frozen pattern strongly
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FIG. 3. Snapshots of an evolution process det4, ¢=0.15, FIG. 4. Same as in Fig. 3, but foa=4, €=0.2, and
and N;=N,=50. The diamonds and pluses show that the sitedN1=N>=52.(a) n=12624,(b) n=42 250, andc) n=>53 134.
reach the values ok;+10 % and x,+10" 2, respectively, where
X1,X» is the period-2 state in E¢3). (a) n=60, (b) n=309, and(c)
n=12 498.

the sites in the center of the frozen chaotic defect cluster, the
dynamical behavior is two-large-band chaotic motion. But
the widths of the chaotic bands damp exponentially as the
site distance in th¢ direction from the center of the frozen
Zhaotic defect cluster increasesee Fig. 7c)]. An empirical
formula

depends on the random initial conditions chosen. In order t
understand the frozen feature, we plot the evolutions of th
sites withi =N,/2 (the characteristics for othérvalues are

the samgin Fig. 7. Some features are worth mentioning. For IX(i,jcx=m)—X|<|A|e”Am (5)



55 SPATIOTEMPORAL PERIODIC AND CHAOTIC ... 83

50

40 |

20

S0 |-

40 |

20

10 F

FIG. 5. Same as in Fig. 3, but far=4, €=0.15, N;=50, and
N,=51. If [X,(i,j) —X|>10"3 [X is the period-2 state in E43)],
the corresponding pixel is black; otherwise it stays whif@.
n=100,(b) n=100 100, andc) n=200 100. A parallel frozen cha-
otic defect cluster is clearly observed (im) and(c).

fits well the actual widths of the chaotic bands in Figc)7
for an arbitraryi value. In Eq.(5), j. denotes the center site
in the frozen chaotic defect cluster ame-(x1,X,) is the
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FIG. 6. T; ; plotted against,j. T ; is the iteration number for
the (i,j)th site to be excited for the first time, starting from Fig.
5(c). A site is regarded as excited jag(i,j) —X|>10"3, whereX is
the same as in Fig. 5.

in Fig. 7(c) are time independent. After some transient itera-
tions, the envelopes are asymptotically approached and fro-
zen forever. The amplitude &= (A;,A,) depends on the
control parametera and e. The exponen3 can be calcu-
lated exactly. The main points for the computation are the
following. First, as|j —j.| is large, linearization of the deri-
vations from the period-2 state can be valid. In the linear
case the margin certainly maps to the margin itself. There-
fore, the margin is a stationary period-4 state of the system.
Inserting Eq.(5) into the linearized Eq(l), we immediately
obtain

sinh3
a(l_f)(l_le)Al_ a6(1_2X2) 2 +1 AZZO,
sinh3
a6(1—2X1) 2 +1 Al+a(l_€)(l_2X2)A2:O,
(6)
leading to the condition
sin
al-(1-24) - |ae(l-2) 50 11
. =0,
sin
ae(1l—2x4) 2hB+l a(l—e)(1-2x,)
(7

from which 8 can be given analytically. Ah=4, ¢=0.15,
we havex;=0.458 414 andx,=0.898 729, and then get
B~0.92, which is confirmed by numerical simulations.

If both N; and N, are taken as odd, the behavior of the
system is dramatically changed. The frozen chaotic defect
cluster is now replaced by a slow, randomly propagated cha-
otic defect stringd(i.e., the chaotic defect string keeps moving
and wanders in space like a Brownian parlic\ith param-

period-2 state in Eq(3). The envelopes of the bands shown eters the same as those in Fig. 5, excepfNp# 51, we plot
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FIG. 7. (a) x,(25,26) plotted va with the same parameters as -
in Fig. 5. The motion is two-large-band chads). x,(25,29) plotted FIG. 8. Same as in Fig. 5 for the same parameters, except

vsn. In comparison with(a), the two bandwidths are much smaller. N1=51. (@ n=100, (b) n=100 100, andc) n=200 100. A slow
() x,(25) plotted vsj in 2500 iterations after the transient pro- propagation of chaotic defect string frd(in) to (c) can be observed.

cess. The envelopes are frozen. defect string is neaN2/N1~1 (the magnitude of the slope

) o ) remainsN2/N1 whenN;# N,). This chaotic defect string
a spatiotemporal process in Fig. 8 in the same manner as fandomly propagates slowly along the vertical direction of

[see Fig. &)]. The magnitude of the slope of the chaotic i, Fig. 9, which is plotted in the same manner as in Fig. 6. It
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FIG. 9. Same as in Fig. 6, but for the same parameters as in Fig.
8 [starting from Fig. &)]. The slow propagation property is clear.

takes a very long time for the lattice sites far from those in
the chaotic defect string to be excited from the period-2 pat-
tern. The cause of the slow random propagation is that the
exponential decay law of Edq5) for Fig. 7 is now broken.
The motion of every site in the chaotic defect string can
arrive at the whold0,1) phase space. We also plot the time
evolutions for some sites in Fig. 10 at the same parameters as
in Fig. 8. The dynamics exhibits a very interesting phenom-
enon, a characteristic of on-off intermitteng3—15. Each

site stays near the “off” statédefined as the period-2 state

in Sec. I) for a long time and suddenly departs from, and 1.0 4
then returns again quickly to, the “off” state. In Fig. @) ] (C)
we present the laminar phase distribution of Fig.(al0 1
showing a nearly- 3 power-law decay scaling.

0 1 H 1 i
0 10000 20000 7%0000 40000 50000

IV. CONCLUDING REMARKS

In conclusion, we have studied both analytically and nu-
merically the interesting pattern dynamics in a two-
dimensional CML system. First, two types of spatiotemporal
periodic patterns are solved analytically, based on the sym-
metric property of the CML system. Their stability bound-
aries for small system size are obtained by a linear stability
analysis. Enlarging the phase space results in a very long and S
complicated transient process before the system falls in these 1 10 n 100 1000
spatiotemporal patterns when the system size matches their
spatial periodicity.

Second, as the system size mismatches the spatial period- FIG. 10. (a) X,(25,26) plotted vs1 with the same parameters as
icity of the T,S;,S;, pattern, two surprising and interesting in Fig. 8. (b) x,(25,29) plotted vs1. The chaotic motion visits the
chaotic patterns appear at the same parameter values. If théole (0,1) phase space. The feature of on-off intermittency is
size of only one spatial directiofodd) mismatches the pat- clegar. (c) The laminar pha_se distribution _(ﬁ&), showing nearly a
tern, a frozen random chaotic defect cluster is formed aftef” 2 POWer-law decay scalinghe dashed line
some transient iterations. The amplitudes of the chaotic mo-
tions damp exponentially as the distance of the site measureshch site extends to the whole,1) phase space. The time
from the site at the center of the chaotic defect cluster inbehavior for every site displays an interesting on-off inter-
creases. However, as the sizes of both spatial directions arittency. These defects can be regarded as topological de-
odd, a slow, randomly propagated chaotic defect string apfects, of which the features depend on the spatial dimension
pears. The exponential decay law is broken. The motion 0bf the system.
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