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Spatiotemporal periodic and chaotic patterns in a two-dimensional coupled map lattice system
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The pattern dynamics of a two-dimensional coupled map lattice system is studied using both analytical and
numerical calculations. Two interesting spatiotemporal periodic patterns are solved analytically. Their stability
boundaries for small system size are obtained by linear stability analysis. As the system sizes mismatch the
spatial periodicity of the patterns, a frozen random chaotic defect cluster and a slow random propagated chaotic
defect string appear.@S1063-651X~96!09712-7#
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I. INTRODUCTION

The dynamics of coupled nonlinear systems has attra
great interest in the past decade@1–12#. One such system is
the coupled map lattice~CML!, which has been demon
strated to be powerful for heuristically understanding
universal features in extended systems in optics, fluids, b
ogy, etc. Rich spatiotemporal complex behaviors, includ
patterns, domain walls, traveling waves, intermitten
chaos, and developed turbulence, are revealed in the
dimensional CML@1–9#. An extension of the study of the
CML to a two-dimensional lattice was briefly addressed
Ref. @6#. It has been known that the two-dimensional CM
system possesses more interesting and complicated
tiotemporal phenomena than the one-dimensional one
deeper investigation of two-dimensional coupled map s
tems may be very useful for understanding even more c
plicated and realistic features of higher-dimensional syste
In this presentation, we focus our attention on the investi
tion of the two-dimensional CML with a nearest-neighb
coupled interaction in square lattices

xn11~ i , j !5~12e! f „xn~ i , j !…1
e

4
@ f „xn~ i21,j !…

1 f „xn~ i11,j !…1 f „xn~ i , j21!…

1 f „xn~ i , j11!…#, ~1!

with the periodic boundary conditionsx( i1N1 , j )[x( i , j ),
and x( i , j1N2)[x( i , j ), whereN1 and N2 are the system
sizes in both spatial dimensions. Heren is the discrete time
index, i (50,1,2,. . . ,N121) andj (50,1,2,. . . ,N221) are
the spatial indices in the horizontal and vertical directio
respectively, ande is the diffusive coupling strength. Th
local mapping functionf (x) is chosen to be the logistic ma
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f (x)5ax(12x), with a the nonlinear parameter. In Ref.@6#,
Kaneko numerically discovered a few interesting phenom
such as pattern selection and chaotic string in the system~1!.
However, more detailed analytical discussions have not b
provided. In Sec. II, we derive some interesting periodic p
terns of the system. Their stability boundaries for small s
tem size in the parameter plane are also worked out ana
cally. In Sec. III, we investigate the dependence of t
spatiotemporal patterns on the system size. As the sys
size mismatches the spatial periodicity of these patterns,
surprising and interesting phenomena, such as a frozen
dom chaotic defect cluster and a slow, randomly propaga
chaotic defect string~i.e., the chaotic defect string keep
moving and wanders in the two-dimensional space like
Brownian particle!, are found. Finally, we give some conclu
sions in Sec. IV.

II. SPATIOTEMPORAL PERIODIC PATTERNS
IN A TWO-DIMENSIONAL CML

In a one-dimensional nearest-neighbor coupling CM
many of spatiotemporal periodic patterns have been obta
by analytical and numerical methods due to the high symm
try @8#. In this section we discuss some periodic patterns
the two-dimensional CML. We will denote the temporal p
riod m asTm , spatial periodn asSn . It is natural to first
study patterns with small-time and -space periods. The s
plest one isT2Si2Sj2 state, which has period 2 for both tim
and two spatial directions. The spatial structure of this st
is schematically shown in Fig. 1~a!. Herex1 andx2 satisfy

x25~12e! f ~x1!1e f ~x2!,

x15~12e! f ~x2!1e f ~x2!, ~2!

which can be solved as
79 © 1997 The American Physical Society
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x1,25
11a22ae6A~11a22ae!224~12a!~12e!28a~12e!2

2a~122e!
, ~3!

which is a period-2 wave pattern running in both spatial directions. Although the solutions have the same form a
one-dimensional CML~see Ref.@8#!, the eigenvalues are different. The stability condition for this state atN152,N252 is
determined by the largest eigenvalue among all the eigenvalues of the 434 linear stability matrix

J5S ~12e! f 1
e

2
f 2

e

2
f 2 0

e

2
f 1 ~12e! f 2 0

e

2
f 1

e

2
f 1 0 ~12e! f 2

e

2
f 1

0
e

2
f 2

e

2
f 2 ~12e! f 1

D S ~12e! f 2
e

2
f 1

e

2
f 1 0

e

2
f 2 ~12e! f 1 0

e

2
f 2

e

2
f 2 0 ~12e! f 1

e

2
f 2

0
e

2
f 1

e

2
f 1 ~12e! f 2

D ,

where f 1,25a(122x1,2). The matrixJ can be put into a block-diagonal form by a unitary transformation as

J85S ~12e!2f 1f 2 0 0 0

0 ~12e!2f 1f 2 0 0

0 0 ~12e!2f 1f 21e2f 2
2 e~12e! f 1~ f 11 f 2!

0 0 e~12e! f 2~ f 11 f 2! ~12e!2f 1f 21e2f 1
2

D .
Thus the corresponding eigenvalues are

l1,25~12e!2f 1f 2 ,

l3,45
2~12e!2f 1f 21e2~ f 1

21 f 2
2!6A@2~12e!2f 1f 21e2~ f 1

21 f 2
2!#224~122e!2f 1

2f 2
2
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The stability boundaries determined by these critical eig
values are shown in Fig. 2 by the solid lines.

Another interesting stateT2Si4Sj2 or T2Si2Sj4 can be eas-
ily deduced from theT2Si2Sj2 state. The spatial structure o
the state is schematically shown in Fig. 1~b! or 1~c!. Here
x1 andx2 are also given by Eqs.~2! and~3!, excepte should
be replaced by34 e. Thus, if there exists aT2Si2Sj2 state at
e0, then there must be aT2Si4Sj2 or a T2Si2Sj4 state at
4
3 e0 and, of course, the system size must match the sp
periodicity of the pattern. With some simple algebra calc
lations, the critical values of the stableT2Si4Sj2 or
T2Si2Sj4 state are just

4
3 times that for theT2Si2Sj2 state. The

stability boundaries of the state are shown in Fig. 2
dashed lines forN154,N252, orN152,N254.

As the system size becomes large and the symmetry o
system becomes very high, the number of attractors incre
rapidly due to the high symmetry. Therefore, an interest
-
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and significant problem naturally arises whether these p
odic states for the small system size still exist and are sta
as the system size increases. As long as the system
matches their spatial periodicity, these patterns always e
in the same parameter region~that is obvious!. However,
enlarging the phase space may result in some change
their stability boundaries. Moreover, the transient process
reaching these patterns may become very long. The stab
analysis of these patterns for large system size has been
mally and briefly discussed in Ref.@8#. Here we simply in-
vestigate the problem by numerical computation. Figure
shows several snapshots of an evolution process of the
tem for N15N2550, a54, and e50.15, where the
T2Si2Sj2 state is stable. We choose the random initial con
tions in~0,1! throughout the paper. At the first time stage, t
behavior of the system is random motion and few sites ar
at the periodic state forming smallT2Si2Sj2 clusters@see Fig.
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3~a!#. After a transient process~309 iterations!, half of the
remaining lattices arrive at this period-2 state@see Fig. 3~b!#.
Figure 3~c! is the final spatiotemporal period-2 pattern afte
12 498 iterations~it was reported as a checkerboard patter
in Ref. @6#!. Several snapshots for another interesting evolu
tion process are shown in Fig. 4 forN15N2552, a54, and
e50.2. From Fig. 4, it is clear that the system finally settle
down into theT2Si2Sj4 pattern after a very complicated and
longer transient process~after 53 134 iterations!.

FIG. 1. Schematic spatiotemporal periodic patterns~a!
T2Si2Sj2, ~b! T2Si4Sj2, and~c! T2Si2Sj4.
r
n
-

s

III. FROZEN RANDOM CHAOTIC DEFECT CLUSTER
AND SLOW RANDOM PROPAGATED CHAOTIC
DEFECT STRING IN A TWO-DIMENSIONAL CML

In the preceding section, we discussed the pattern dyn
ics for even system size, which matches the spatial perio
ity of the given states. What happens when the system
mismatches their spatial periodicity@i.e.,N1 or N2 ~or both!
is ~are! taken as odd#? In the following, we investigate the
interesting problem for theT2Si2Sj2 pattern only.

First, we let the size of one spatial direction take an o
number and the other remains even. For instance, we tak
parameters to be the same as those in Fig. 3, excep
replaceN2550 by 51. Now theT2Si2Sj2 pattern cannot be
stable due to the mismatch of the odd size number of thj
direction. We show several snapshots of an evolution proc
in Fig. 5. From the figure, a very interesting and surprisi
phenomenon, a parallel chaotic defect cluster~the width is
near eight sites, the other sites stay at the period-2 st!,
appears after some transient iterations. As long as the cha
defect cluster is formed along thei direction, it is frozen
forever ~forever in the sense that the time period for t
frozen pattern numerically tested is already incompara
larger than the transient time!.

Comparing Fig. 5~c! with Fig. 5~b!, the pattern is almos
the same, although the system evolves another 105 iterations.
The frozen feature can be more clearly observed in Fig
We plot the timeTi , j againsti , j , whereTi , j is the first time
for the (i , j )th site to be excited from the period-2 stat
starting from Fig. 5~c!. The times for these sites, which d
not belong to the chaotic defect pattern, are almost infin
~the white region in Fig. 6!. Therefore, the frozen character
clear. Furthermore, the position of the frozen pattern stron

FIG. 2. Stability boundaries forT2Si2Sj2 (N15N252, solid
lines!, T2Si4Sj2 (N154,N252, dashed lines!, or T2Si2Sj4
(N152, N254).
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depends on the random initial conditions chosen. In orde
understand the frozen feature, we plot the evolutions of
sites with i5N1/2 ~the characteristics for otheri values are
the same! in Fig. 7. Some features are worth mentioning. F

FIG. 3. Snapshots of an evolution process fora54, e50.15,
and N15N2550. The diamonds and pluses show that the s
reach the values ofx161023 and x261023, respectively, where
x1 ,x2 is the period-2 state in Eq.~3!. ~a! n560, ~b! n5309, and~c!
n512 498.
to
e

r

the sites in the center of the frozen chaotic defect cluster,
dynamical behavior is two-large-band chaotic motion. B
the widths of the chaotic bands damp exponentially as
site distance in thej direction from the center of the froze
chaotic defect cluster increases@see Fig. 7~c!#. An empirical
formula

ux~ i , j c6m!2 x̂u<uAue2bm ~5!

s

FIG. 4. Same as in Fig. 3, but fora54, e50.2, and
N15N2552. ~a! n512 624,~b! n542 250, and~c! n553 134.
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55 83SPATIOTEMPORAL PERIODIC AND CHAOTIC . . .
fits well the actual widths of the chaotic bands in Fig. 7~c!
for an arbitraryi value. In Eq.~5!, j c denotes the center sit
in the frozen chaotic defect cluster andx̂5(x1 ,x2) is the
period-2 state in Eq.~3!. The envelopes of the bands show

FIG. 5. Same as in Fig. 3, but fora54, e50.15, N1550, and
N2551. If uxn( i , j )2 x̂u.1023 @x̂ is the period-2 state in Eq.~3!#,
the corresponding pixel is black; otherwise it stays white.~a!
n5100,~b! n5100 100, and~c! n5200 100. A parallel frozen cha
otic defect cluster is clearly observed in~b! and ~c!.
in Fig. 7~c! are time independent. After some transient ite
tions, the envelopes are asymptotically approached and
zen forever. The amplitude ofA5(A1 ,A2) depends on the
control parametersa and e. The exponentb can be calcu-
lated exactly. The main points for the computation are
following. First, asu j2 j cu is large, linearization of the deri
vations from the period-2 state can be valid. In the line
case the margin certainly maps to the margin itself. The
fore, the margin is a stationary period-4 state of the syst
Inserting Eq.~5! into the linearized Eq.~1!, we immediately
obtain

a~12e!~122x1!A12Fae~122x2!
sinhb

2
11GA250,

Fae~122x1!
sinhb

2
11GA11a~12e!~122x2!A250,

~6!

leading to the condition

U a~12e!~122x1! 2Fae~122x2!
sinhb

2
11G

Fae~122x1!
sinhb

2
11G a~12e!~122x2!

U50,

~7!

from which b can be given analytically. Ata54, e50.15,
we havex150.458 414 andx250.898 729, and then ge
b'0.92, which is confirmed by numerical simulations.

If both N1 andN2 are taken as odd, the behavior of th
system is dramatically changed. The frozen chaotic de
cluster is now replaced by a slow, randomly propagated c
otic defect string~i.e., the chaotic defect string keeps movin
and wanders in space like a Brownian particle!. With param-
eters the same as those in Fig. 5, except forN1551, we plot

FIG. 6. Ti , j plotted againsti , j . Ti , j is the iteration number for
the (i , j )th site to be excited for the first time, starting from Fi
5~c!. A site is regarded as excited asuxn( i , j )2 x̂u.1023, wherex̂ is
the same as in Fig. 5.
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84 55FAGEN XIE AND GANG HU
a spatiotemporal process in Fig. 8 in the same manner a
Fig. 5. After the transient iterations, a near linear chao
defect cluster~the width is also near eight sites! is organized
@see Fig. 8~b!#. The magnitude of the slope of the chao

FIG. 7. ~a! xn(25,26) plotted vsn with the same parameters a
in Fig. 5. The motion is two-large-band chaos.~b! xn(25,29) plotted
vsn. In comparison with~a!, the two bandwidths are much smalle
~c! xn(25,j ) plotted vs j in 2500 iterations after the transient pro
cess. The envelopes are frozen.
in
c

defect string is nearN2/N1'1 ~the magnitude of the slope
remainsN2/N1 whenN1ÞN2). This chaotic defect string
randomly propagates slowly along the vertical direction
the chaotic defect string through the coupling interaction@see
Fig. 8~c!#. The slow randomly propagation feature is show
in Fig. 9, which is plotted in the same manner as in Fig. 6

FIG. 8. Same as in Fig. 5 for the same parameters, ex
N1551. ~a! n5100, ~b! n5100 100, and~c! n5200 100. A slow
propagation of chaotic defect string from~b! to ~c! can be observed
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takes a very long time for the lattice sites far from those
the chaotic defect string to be excited from the period-2 p
tern. The cause of the slow random propagation is that
exponential decay law of Eq.~5! for Fig. 7 is now broken.
The motion of every site in the chaotic defect string c
arrive at the whole~0,1! phase space. We also plot the tim
evolutions for some sites in Fig. 10 at the same paramete
in Fig. 8. The dynamics exhibits a very interesting pheno
enon, a characteristic of on-off intermittency@13–15#. Each
site stays near the ‘‘off’’ state~defined as the period-2 sta
in Sec. II! for a long time and suddenly departs from, a
then returns again quickly to, the ‘‘off’’ state. In Fig. 10~c!
we present the laminar phase distribution of Fig. 10~a!,
showing a nearly2 3

2 power-law decay scaling.

IV. CONCLUDING REMARKS

In conclusion, we have studied both analytically and n
merically the interesting pattern dynamics in a tw
dimensional CML system. First, two types of spatiotempo
periodic patterns are solved analytically, based on the s
metric property of the CML system. Their stability boun
aries for small system size are obtained by a linear stab
analysis. Enlarging the phase space results in a very long
complicated transient process before the system falls in th
spatiotemporal patterns when the system size matches
spatial periodicity.

Second, as the system size mismatches the spatial pe
icity of the T2Si2Sj2 pattern, two surprising and interestin
chaotic patterns appear at the same parameter values.
size of only one spatial direction~odd! mismatches the pat
tern, a frozen random chaotic defect cluster is formed a
some transient iterations. The amplitudes of the chaotic
tions damp exponentially as the distance of the site meas
from the site at the center of the chaotic defect cluster
creases. However, as the sizes of both spatial directions
odd, a slow, randomly propagated chaotic defect string
pears. The exponential decay law is broken. The motion

FIG. 9. Same as in Fig. 6, but for the same parameters as in
8 @starting from Fig. 8~c!#. The slow propagation property is clea
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each site extends to the whole~0,1! phase space. The tim
behavior for every site displays an interesting on-off int
mittency. These defects can be regarded as topological
fects, of which the features depend on the spatial dimens
of the system.

FIG. 10. ~a! xn(25,26) plotted vsn with the same parameters a
in Fig. 8. ~b! xn(25,29) plotted vsn. The chaotic motion visits the
whole ~0,1! phase space. The feature of on-off intermittency
clear. ~c! The laminar phase distribution of~a!, showing nearly a
2

3
2 power-law decay scaling~the dashed line!.

ig.
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